CENE 486C NAU Pottery Ramada

Luis Corral, Madison Kaltschnee, Samantha Ray, and Kayla Cross

November 13th, 2020

Photo provided by Kayla Cross

Project Introduction

A kiln located at Northern Arizona University's Pottery Complex needs a ramada to protect students from inclement weather conditions.

> **Client: Jason Hess Professor, School of Art**

Photo provided by Kayla Cross

Project Location

Starbucks

The Suites

WA Franke College of Business – NAU

College of Social and Behavioral...

J. Lawrence Walkup Skydome

Northern

Arizona

University

Du Bois Center

P66 P

the state

Mark De

P64

Kinsey Elementary

Computer Guy's USA

NAU Police Department

NAU Extended Campuses

Clear Creek Ephe Village Apartments

partments

Ridgela

Creek Apartr

Location of Kiln

Arizona

stutter la Revent Re

Imagery ©2020 Google, Imagery ©2020 Maxar Technologies, USDA Farm Service Agency, Map data ©2020 200 ft 🗆

Imagery ©2020 Maxar Technologies, Map data ©2020 50 ft 🗆

Project Constraints

- Ramada needs to look aesthetically similar to other existing ramadas by using similar material types
- Limited space to place foundations due to existing structures
- Client would like to keep the budget near \$10,000 but can be flexible

(this only includes cost of materials)

Photo provided by Kayla Cross

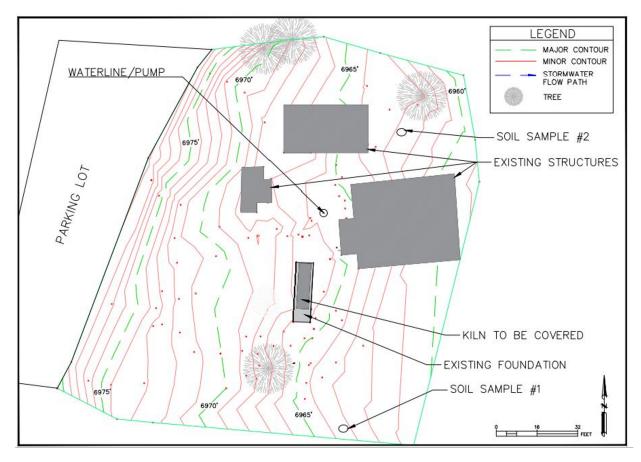

Analysis of Existing Site

Photo provided by Madison Kaltschnee

Topographic Site Map

7

Geotechnical Analysis

Tests Conducted

- 1. Particle Size Distribution Using the Sedimentations (ASTM D7928-17)
- 2. Atterberg Limits (ASTM D4318)
- 3. Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions (ASTM D3080/D3080M-11)*
- *Planned to conduct this test but direct shear machine was out-of-use
- *Used allowable soil bearing pressure and lateral soil pressure values from Speedie Geotech Report

Photo provided by Kayla Cross

Soil Classification

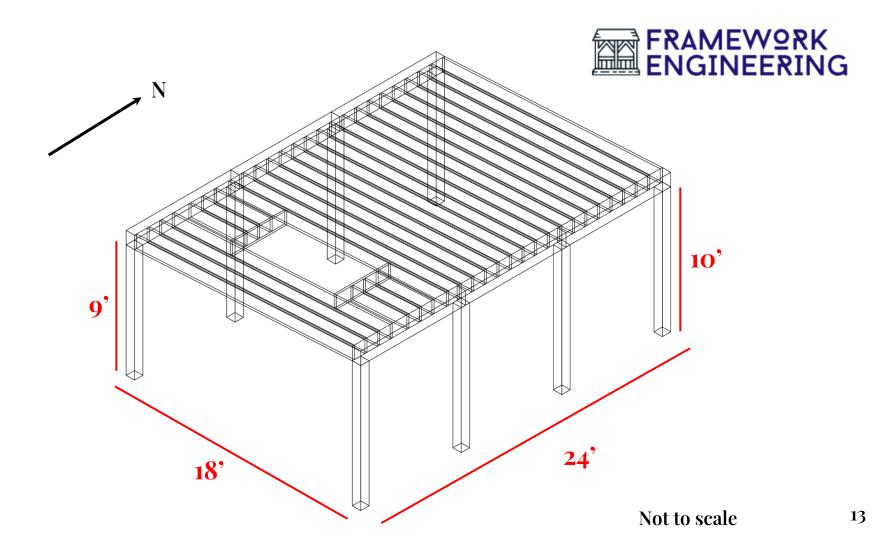
AASHTO » A-1-b Stone fragments; gravel and sand

USCS » SP-SM poorly graded sand with silt

When digging, we also found limestone 2-2.5' deep down and had to use a drill to get to soil

These Items matched what was written in the Speedie Geotech Report

Photo provided by Madison Kaltschnee



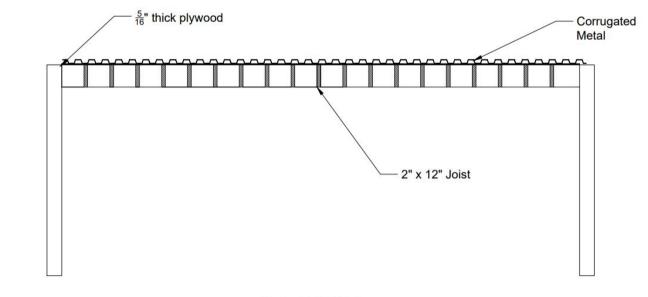
Google SketchUp Model Drawn by Luis Corral

Structural Analysis

Ramada Geometry Decision Matrix - Roof Design Type						
		Mor	noslope	Pitched		
<u>Criteria</u>	Weight	Score*	Weighted Score	Score*	Weighted Score	
Shed water away from other kilns	0.2	9	1.8	5	1	
Design difficulty	0.1	6	0.6	6	0.6	
Construction feasibility	0.3	7	2.1	4	1.2	
Client preference	0.1	9	0.9	0.9 6		
Cost of materials	0.25	10	2.5	7	1.75	
Aesthetics	0.05	5	0.25	10	0.5	
Allowable design height to fit chimney	0.1	7.5	0.75	4	0.4	
Total	1	N/A	8.9	N/A	6.05	
*Based on a scale of 1-10 (1 being the l	owest score,	10 being the l	nighest score)			

<u>Per ASCE 7-16: Minimum Design Loads and Associated Criteria for</u> <u>Buildings and Other Structures</u>

- -Dead load: 6 psf
- -Roof live load: 20 psf
- -Snow load: 51 psf
- -Downward wind load: 30 psf


- -Upward wind load: 37 psf
- -Lateral wind load: 16 psf
- -Horizontal seismic load: 3.5 psf
- -Vertical seismic load: 1.04 psf

Roof

-Corrugated metal roof (Gauge 20)

-5/16" plywood

FRAMEW9RK ENGINEERING

Analysis of Wood Elements

Samples of Calculations:

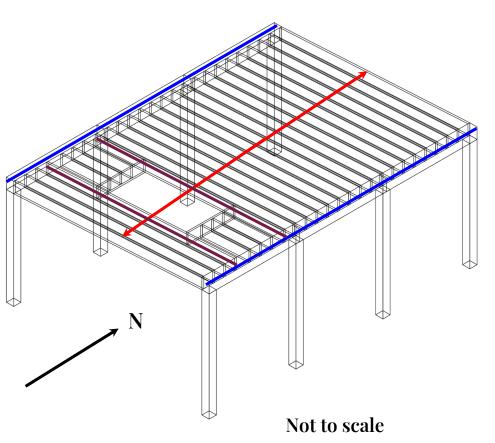
Members must pass the following checks:

-Bending capacity

-Shear capacity

-Deflection capacity

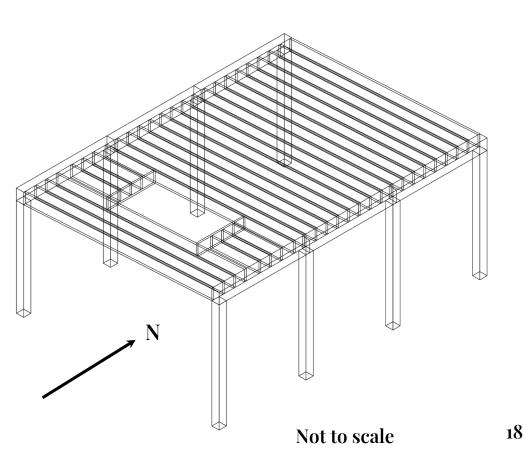
					Step 5				2×12			
V w	wL/2				0.29 0	joist size d			11.25	i in		
V (lbs)	NLIZ	541.5				b			1.5			
V (lbs)		041.0				s			31.640625 0.01831054688			
Fy 3	3V/(2bd)											
FV (lb/ft^2)	30/(200)	6931.2				fb			140472.32			bending stres
EV (lomez)		0831.2				fb			975.5022	psi	< applied	bending stres
					Step 6	Cd			1.15	i		
Allowable Shear F	F'v= Fv(a)*Cd*Cm					Cm			1			
Cd	F V= FV(a)-Cd-Cm 1.15		snow load (most conservi			Ct			1			
Cd	1.15		snow load (most conservi moisture < 19% for extend			CI			1			
Ct	1		t<100 degrees	ded pendos		Cfu			1			
Ci	1		t<100 degrees is it incised?			Cc			1			
G	1		is it incised?			Cr			1.15			
		150				Fb			850	nsi	< HF #2	
Fv allowable (psi) Fv allowable (psf)		150 21600		ļ		Fb			122400			
EV allowable (psr)		21000	Hem-Fer			F'b			161874			le bending str
		24840				F'b			1124.125	psi	< allowab	le bending str
F'v (psf)		24840			Step 7	86.	77880327 %			ок	Use: 2x12	HF #2
Stressed (%)		27.90338164	ок		W (lb/in)		4.7	5		-		
Of solution					L (in)		22	8				
-					L (in) E (osi)		22 1300	-	< NDS supplement	nt .		
g Check: 8x8					E (psi)		1300	000	< NDS supplement	nt		
-	fc=P/A							000	< NDS supplemen	nt		
-	P	7	7043.028125	lb	E (psi) I (in3)		1300 177.978	000 85156	< NDS supplemen	nt		
-	P		58.25	lb in2	E (psi)	n (in)	1300	000 85156	< NDS supplemen	nt		
-	P				E (psi) I (in3)	1 (in)	1300 177.978	000 85156	< NDS supplemen	nt		
-	P		58.25 125.2093889	in2	E (psi) I (in3)		1300 177.978	000 85156 71902	< NDS supplemen	nt		
8x8	P A fc xially loaded)		58.25 125.2093889 1850	in2	E (psi) I (in3) deflection		1300 177.978 0.7223	000 85156 71902 40	< NDS supplemen	nt		
8x8	P A fc xially loaded) CD		58.25 125.2093889	in2 psi	E (psi) I (in3) deflection allowable L/240	e defl	1300 177.973 0.7223 L/24 0.9	000 85156 71902 40		nt		
8x8	P A fc xially loaded)		58.25 125.2093889 1850	in2 psi	E (psi) I (in3) deflection allowable	e defl	1300 177.973 0.7223 L/24 0.9 0 of NDS	000 85156 71902 40 5	ОК			
8x8	P A fc xially loaded) CD		58.25 125.2093889 1850 1.15	in2 psi	E (psi) I (in3) deflection allowable L/240	e defl	1300 177.973 0.7223 L/24 0.9 0 of NDS Axial los	000 85156 71902 40 5 ad on colu	OK mn	7043.028		lb
8x8	P A fc xially loaded) CD CM		58.25 125.2093889 1850 1.15 1	in2 psi	E (psi) I (in3) deflection allowable L/240	e defl	1300 177.973 0.7223 L/24 0.9 0 of NDS Axial los	000 85156 71902 40 5	OK mn			lk ir
8x8	P A fc xially loaded) CD CM Ct		56.25 125.2093889 1850 1.15 1 1	in2 psi	E (psi) I (in3) deflection allowable L/240	e defl	1300 177.973 0.7223 L/2- 0.9 0 of NDS Axial los	000 85156 71902 40 5 ad on colu	OK mn rea	7043.028		
8x8	P A fc CD CM Ct CF		58.25 125.2093889 1850 1.15 1 1 1	in2 psi	E (psi) I (in3) deflection allowable L/240	e defl	1300 177.973 0.7223 L/2- 0.9 0 of NDS Axial los	000 85156 71902 40 5 ad on colu Bearing a	OK mn rea	7043.028 56.25		ir
8x8	P A fe CD CD CM Ct CF Ci		58.25 125.2093889 1850 1.15 1 1 1 1	in2 psi	E (psi) I (in3) deflection allowable L/240	e defl	1300 177.973 0.7223 L/2- 0.9 0 of NDS Axial los	40 55 ad on colu Bearing a Applied Ic	OK mn rea bad	7043.028 56.25 125.209		ir P
8x8	P A fe CD CD CM Ct CF Ci	1	58.25 125.2093889 1850 1.15 1 1 1 1	in2 psi	E (psi) I (in3) deflection allowable L/240	e defl	1300 177.973 0.7223 L/2- 0.9 0 of NDS Axial los	000 85156 71902 40 5 ad on colu Bearing a	OK mn rea bad	7043.028 56.25		ir P
8x8	P A fc xially loaded) CD CM Ct CF Ci CF Ci CP	1	58.25 125.2093889 1850 1.15 1 1 1 1 1 0.2420	in2 psi psi	E (psi) I (in3) deflection allowable L/240	e defl	1300 177.973 0.7223 L/2- 0.9 0 of NDS Axial los	40 55 ad on colu Bearing a Applied Ic	OK mn rea bad	7043.028 56.25 125.209		ir


Joists and Beams

-Joists »> 2x12 members, 19'

-Joists adjacent to chimney » (3) 2x12 members, 19'

-Beams >>> 8x12 members, 8'



<mark>Columns</mark>

-Lateral force resisting system: cantilever columns

-8x8 members, (4) 10' and (4) 9'

Foundations

CALCULATIONS: Using Terzaghi's Bearing Capacity Equation for Circular Foundations

 $q_u = 1.3c'N_c + qN_q + 0.3\gamma BN_\gamma$ (Circular Foundations)

 $c' = soil \ cohesion$

 γ = unit weight of soil

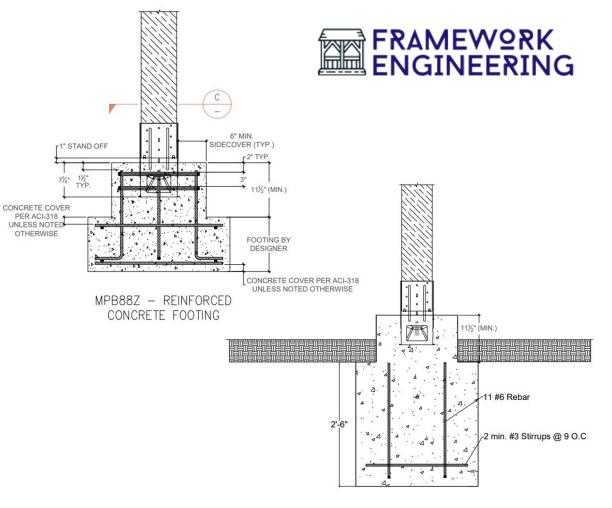
q = effective stress at the bottom of the foundation

 N_c , N_q , N_{γ} = Bearing Capacity Factors

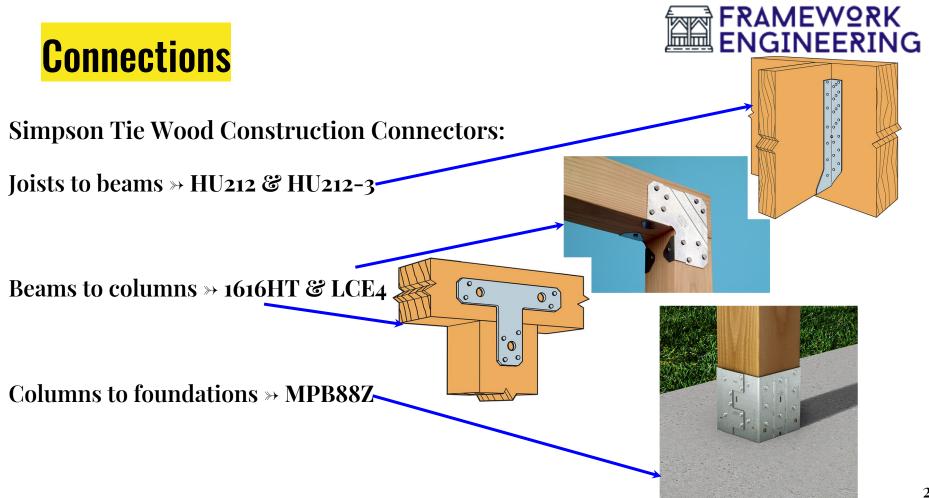
B = Diameter of Foundation

RESULTS:

- 2'-o" diameter circular shallow foundations
- 30" with 6" above soil surface (36" total)


Foundation Rebar

Rebar required by connection:


- Vertical Reinforcement: 8 #5 @ 8" o.c.
- Shear Reinforcement: #4 stirrups @ 3" o.c.

Design rebar:

- Vertical Reinforcement: 11 #6 spaced @ 1" o.c. min.
- Shear Reinforcement: 2 #3 stirrups spaced @ 9" o.c.

Not to scale

Photo provided by Kayla Cross

Material Specifications

- Joists » Hem Fir #2 wood
- Beams » Douglas Fir #2 wood
- **Columns » Glue-Laminated Douglas Fir (DF/DF 24F-V4)**
- Plywood »> 5/16" thick of any type of wood
- Metal decking » 20 Gauge with corrugated ridges for water runoff
- Foundations » 4000 psi concrete
- Rebar -> yield strength of 60 ksi

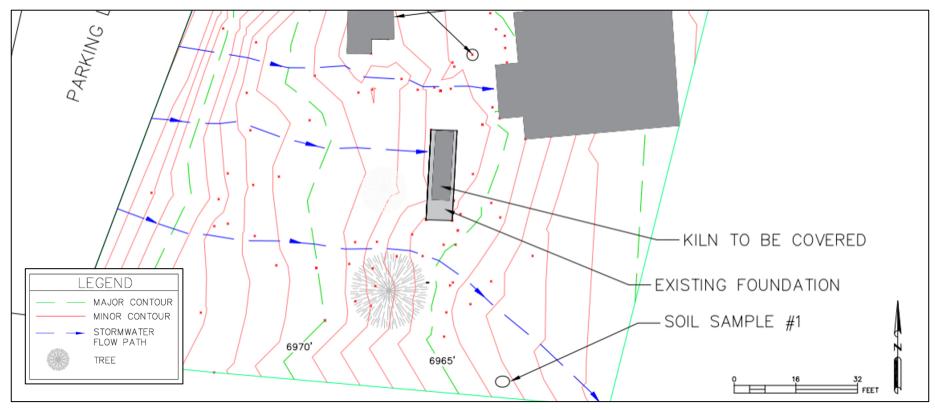
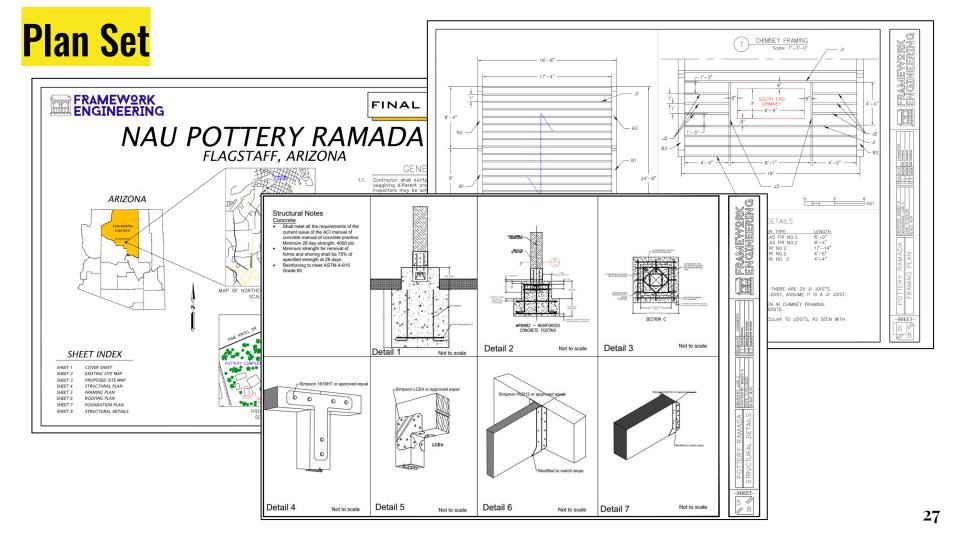


Photo provided by Madison Kaltschnee

Existing Drainage Analysis



Drainage Analysis

Project Management

Photo provided by Kayla Cross

Cost Estimate of Materials

Original Budget: ~\$10,000

Over budget by: \$4,795

Possible Reasons:

- Retail pricing
 - Construction company may be able to obtain contractor discounts

• Availability

- Some materials are easier to obtain than others
- Delivery Fees

Section	Material	Quantity	Cost	
	2x12 Joists	26	\$489.00	
Framing	8x12 Beams	6	\$4,684.00	
	8x8 Columns	8	\$3,803.00	
	Plywood	456 square feet	\$450.00	
Roofing	Metal Roofing	456 square feet	\$1,350.00	
rtooning	Philip Flat Head Sheet Metal Stainless Steel Screws	300 screws	\$30.00	
Pier Foundations	Concrete	Concrete 10 cubic feet per pier		
	Rebar	52 feet per pier	\$420.00	
	HU212	52	\$468.00	
Connections	HU212-3	4	\$188.00	
	1616HT	8	\$320.00	
	LCE4	8	\$64.00	
	MBP88Z	8	\$1,760.00	
Berm	Native Top Soil	3 cubic yards	\$249.00	
		Total cost	\$14,795.00	

Original Estimate: ~20 weeks

Proposed Hours					
Role	Hours	Days			
Senior Engineer	72	9			
Engineer	183.5	22			
Engineer in Training	321.5	40			
Lab Technician	10	1			
Engineering Intern	129	16			
Administrative Assistant	70	8			
Total	786	98			

Actual Hours						
Role	Hours	Days				
Senior Engineer	65.75	8				
Engineer	200	25				
Engineer in Training	175.5	21				
Lab Technician	20	2				
Engineering Intern	115	14				
Administrative Assistant	45	5				
Total	621.25	77				

Actual: ~16 weeks

Reasons behind shortened project length:

- COVID-19 pandemic affected ability to reserve survey equipment and lab time in the summer months
- Planset allocated more time than needed
- Geotechnical analysis testing not able to perform direct shear testing
- Drainage analysis scope of analysis was decreased from original plan

Project Impacts

<mark>Economic</mark>

- Less maintenance, repairs, or replacements
- Extended lifetime
- Increase student enrollment in ceramic classes
- Increase in property value

- Better aesthetics within pottery complex
- Increased campus pride
- Happier students and faculty

Environmental

- Improved stormwater drainage control
- Less flooding near Kilns
- Increased CO2 levels due to more use

Thank you for listening. Any questions?

For more information about our project, please visit our website at:

https://www.ceias.nau.edu/capstone/projects/CENE/2020/NAUPotteryRamada/

Recorded Presentation Zoom Link

- https://nau.zoom.us/rec/play/ZqhBPbV2WoFYOpyn95PwSfHyzk_tHorHho4-BToQ8_M99IKPpT9dnic9-CdkkTW_LRImZKltRZoPkqP.fs8KRTbqlN5xBYWg?continueMode=true&_
 x_zm_rtaid=jllRtQtnQyy24MwFmZLMlg.1605725666342.3ea70ba62a8999cd 3c27edaa02cc6b5e&_x_zm_rhtaid=687
- Ramada Presentation: 50:00:00 1:14:35